大衍步月离术第四
转终分:六百七十万一千二百七十九。
转终日:二十七;馀,一千六百八十五;秒,七十九。
转法:七十六。
转秒法:八十。
推天正经朔入转以转终分去朔积分,不尽,以秒法乘,盈转终分又去之,馀如秒法一而入转分。不尽为秒。入转分满大衍通法,为日。不满为馀。命日算外,即所求年天正经朔加时入转日及馀秒。
求次朔入转因天正所入转差日一、转馀二千九百六十七、秒分一,盈转终日馀秒者去之。数除如前,即次日经朔加时所入。考上下弦望,如求经朔四象术,循变相加,若以经朔望小馀减之,各其日夜半所入转日及馀秒。
求朔弦望入朓朒定数各朔其所入日损益而半之,为通率。又二率相减为率差。前多者,以入馀减大衍通法,馀乘率差,盈大衍通法得一,并率差而半之。前少者,半入馀,乘率差,亦以大衍通法除之,为加时转率。乃半之,以损益加时所入,馀为转馀。其转馀,应益者,减法;应损者,因馀。皆以乘率差,盈大衍通法得一,加于通率。转率乘之,大衍通法约之,以朓减朒加转率为定率。乃以定率损益朓朒积为定数。其后无同率者,亦因前率,益者以通率为初数,半率差而减之。应通率,其损益入馀,进退日者,分为二日,随馀初末如法求之,所得并以损益转率。此术本出《皇极历》,以究算术之微变。若非朔望有交者,直以入馀乘损益,如大衍通法而一,以损益朓朒为定数,各得所求。
七日初:二千七百一,约为大分八。末:三百三十九,约为大分一。
十四日初:二千三百六十三,约为大分七。末:六百七十七,约为大分二。
二十一日初:二千二十四,约为大分六。末:一千一十六,约为大分三。
二十八日初:一千六百八十六,约为大分五。末:一千三百五十四,约为大分四。
右以四象约转终日及馀,均得六日二千七百一分。就全数约为大分,是为之八分。以减法,馀为末数。乃四象驯变相加,各其所当之日初末数也。视入转馀,如初数以下者,加减损益,因循前率;如初数以上,则反其衰,归于后率云。
求朔弦望定日及馀以入气、入转朓朒定数,同名相从,异名相消。乃以朓减朒加四象经小馀。满若不足,进大馀。命以甲子算外,各其定日及小馀。干名与后朔叶同者,月大。不同者,小;无中气者,为闰月。凡言夜半者,皆起晨前子正之中。若注历观弦望定小馀,不盈晨初馀数者,退一日。其望,小馀虽满此数,若有交蚀,亏初起在晨初已前者,亦如之。又月行九道迟疾,则三大二小。以日行盈缩,累增损之,则容有四大三小,理数然也。若俯循常仪,当察加时早晚,随其所近而进退之,使不过三小。其正月朔,若有交加时正见者,消息前后一两月,以定大小,令亏在晦二。
推定朔弦望夜半日所在度各随定气次日以所直日度及馀分命焉。若以五星相加减者,以四约度馀。乃列朔弦望小馀,副之,以乘其日盈缩分,如大衍通法而一,盈加缩减其副,以加其日夜半度馀,命如前,各其日加时日躔所次。
推月九道度凡合朔所交,冬在阴历,夏在阳历,月行青道。冬、夏至后,青道半交在春分之宿,殷黄道东。立冬、夏后,青道半交在立春之宿,殷黄道东南。至所冲之宿亦如之也。冬在阳历,夏在阴历,月行白道。冬至夏至后,白道半交在秋分之宿,殷黄道西。立北。至所冲之宿亦如之也。春在阳历,秋在阴历,月行朱道。春、秋分后,朱道半交在夏至之宿,殷黄道南。立春立秋后,朱道半交在立夏之宿,殷黄道西南。至所冲之宿亦如之也。春在阴历,秋在阳历,月行黑道。春、秋分后,黑道半交在冬至之宿,殷黄道北。立春立秋后,黑道半交在立冬之宿,殷黄道东北。至所冲之宿亦如之也。四序离为八节,至阴阳之始交,皆以黄道相会,故月有九行。各视月交所入七十二候,距交初黄道日每五度为限。交初交中同。亦初数十二,每限减一,数终于四,乃一度强,依平。更从四起,每限增一,终于十二,而至半交,其去黄道六度。又自十二,每限减一,数终于四,亦一度强,依平。更从四起,每限增一,终于十二,复与日轨相会。各累计其数,以乘限度,二百四十而一,得度。不满者,二十四除,为分。若以二十除之,则大分。十二为母,命以半太及强弱也。为月行与黄道差数。距半交前后各九限,以差数为减;距正交前后各九限,以差数为加。此加减是出入六度,单与黄道相交之数也。若交赤道,则随气迁变不恒。计去冬至夏至以来候数,乘黄道所差,十八而一,为月行与赤道差数。凡日以赤道内为阴,赤道外为阳;月以黄道内为阴,黄道外为阳。故月行宿度入春分交后行阴历,秋分交后行阳历,皆为同名;若入春分交后行阳历,秋分交后行阴历,皆为异名。其在同名,以差数为加者加之,减者减之;若在异名,以差数为加者减之,减者加之。皆以增损黄道度为九道定数。