第二章 在家里学数学大数字相乘
我们做多位数乘法时,比如24×57,或是132×853,可以把大数字分解成简单的小数字。比如8可以分解为3和5,2×8就等于2×3加上2×5。可以写成这样的等式:
2×8=(2×3)+(2×5)
不过不少人会搞不懂为什么是这样。或许他们还会看到下列这个算式:
3×14=(3×10)+(3×4)
=30+12
=42
但他们还是无法相信这个算法适用于所有数字。
一些算术课本在回答“为什么上述等式成立”这个问题时,会解释说“乘法可以分配成加法来计算”。对大多数人来说,这个说法并没有让他们明白多少。本来这也不是什么解释,只是把事实换了种方法说出来而已。
让我们换种方式想,上面的算式只是自然事实的一种体现,并不需要什么解释,这样或许倒容易理解一些。“为什么会这样?”这种问法还不如直接问为什么7可以分解为3和4。之所以这样是因为本来就是这样。这个事实后面并没有隐藏着什么更深奥的道理。
好了,现在回到刚刚说过的乘法算式,我们看到了一个已经成立的,也必将永远成立的事实。可以这样想,如果我们按照食谱构成把一份菜肴分量加倍,就意味着要把食谱中要求的任一成分的分量加倍。如果食谱要求两个鸡蛋,我们把它加倍,就变成四个鸡蛋。如果食谱上是一杯面粉,我们想加倍,就要把它变成两杯面粉。即使是害怕数字和算术的人也能明白并确信这个道理。
那么我们也能明白,如果7可以变成3和4,那么两个7就变成两组3和4:
*******
*******
如果是三个7,就变成三组3和4:
*******
*******
*******
以此类推。
乘法在此处用起来就很方便,否则,如果我们想用67乘以8,就不得不写下8遍67,再把它们相加。但是用乘法,我们就可以将67分解为60和7,然后用60×8加上7×8,即480+56,就得出536。我们可以写成下面这个算式:
67×8=(60×8)+(7×8)
=480+56
=536
这里提到的只是运算技巧的一两个简单的步骤,或者只是数学家所说的多位数乘法的“运算规则”。随便什么算术课本上都有,我就不在此展开讲了。
不过我不会急于让孩子们学会这种学校所推崇的简便算法,他们本来已经理解了多位数相乘的原始计算步骤。而且,这种简便算法也没有真的简便多少,充其量是少写几个零而已。如果过早地教孩子们这种简便算法,会把他们搞糊涂,这是得不偿失的。
所以,如果我们需要计算562×74,我们当然可以把74分解为70和4,然后分别计算562×70和562×4,再把结果相加。如果孩子们自己对简便算法感兴趣,那很好,但这并不意味着我们必须要像学校那样,花上几个星期甚至几个月去反复训练他们,就为了熟练掌握这种少不了几步的、生活中很少会用到的简便算法。
第二章 在家里学数学分数
当我教五年级的时候,在开始“教”孩子分数概念,甚至是在提到这个词之前,我会问他们这样的问题:“如果你有3块糖,想均匀地分给5个人,你怎么分呢?” 他们大多会想出一种或两种办法。但是当他们“学会”了分数的概念,并想着用分数去解决这种问题时,他们倒往往做不出来了。他们用现实、自己的常识和聪明能想出办法,但如今知道了“规则”的他们,却无法解决问题,不知道怎么应用这个规则。
在《我星期一做什么》这本书里,我试图解释这种现象:
事情往往是这样的,我们的解释会把事情弄得更错综复杂。我们大多数人在“解释”加上的时候,会说先把它们变成六分之几然后相加,“因为你不能用苹果和橘子相加”等等……这种说法既不合情理也很荒谬。苹果当然能和橘子相加。每一两个礼拜我去超市,我会先把一塑料袋苹果放进推车,然后到货架另一边抓一袋橘子扔进车里。我这不正在把苹果和橘子相加吗?同样道理,农夫先把一群牛赶进牲口棚,稍后可能又赶进来一群马,牛和马也被加在一起了。或者汽车商先开进来6辆福特,然后是5辆雪佛兰,福特和雪佛兰也加在了一起。
问题出在我们并没有说清楚我们本来的意思,因为我们事先并没想清楚自己到底想说什么。我们究竟想说明什么呢?
出人意料的是,很多孩子都知道这个问题,或者其实很容易弄明白这个问题。我曾经问一些6岁的孩子:“如果我把3匹马赶进牧场,然后又放进来3头牛,牧场上现在有什么?”孩子们想了一想,有的就会回答:“5个动物。”
当我们做出那个关于苹果橘子不能相加的让人费解的论断时,本意并非要说“相加”,而是结果的表达方式。我们可以把任何两样东西相加。真正的问题是,我们怎么表达这个结果。这是我们本来意思的第一个部分。第二个部分是,我们想找到一个数字,也就是分子,它能够描述苹果和橘子,或是马和牛,或是雪佛兰和福特,相加后得到的集合,这样的话我们就得给这个集合找“同一个名字”,也就是分母,这个名字适用于这个集合里的所有个体。这个名字是一个类别,于是我们得想出来一个其中的所有个体都具有的共性。就这么简单。这就是当我把3匹马和2头牛相加时,小孩子所说的“5个动物”。如果我想对我的篮子里所有的苹果和橘子使用一个分子,我得先想出来一个这两种东西都属于的类别,一个共同的名字,一个公分母。这就是水果。如果是汽车商,停车场里有几辆福特和雪佛兰,他要是想说那里有什么,他会说“我有5辆雪佛兰和6辆福特”。但如果他只想用一个数字表示,就得想出一个共同的名字,就必须有一个公分母。他可以说他有11辆汽车。如果他卖的是农业机械,停车场里不光是汽车,还有拖拉机、推土机诸如此类的东西,他可能会说:“我有这些机械车辆。”
现在学校里讲到分数时所用的例子只是一个特例。如果我把个馅饼放在盘子里,再放上的同一个馅饼(或者是另一个同样大小的馅饼的),我会说盘子里有什么呢?我可以说我有个和个馅饼。我还可以说我有2“块”馅饼。在这个例子里,“块”是个很棒的公分母。但它当然没能说明白我的盘子里有多少馅饼,是大块还是小块。所以我还得做两件事。首先,给我的这几块馅饼找到共同的名字,即公分母,告诉我整个馅饼有多大。然后,我的两块馅饼使用同样的名字,即公分母。我可以这么说,大块的馅饼是块馅饼,小块的是块馅饼。这样就很容易看出来当把这么两块馅饼相加时,得到的就是块馅饼。
谈了这么半天馅饼的例子,我现在要说的是,使用馅饼或圆形图来给孩子们介绍分数的概念是不当的。最简单的原因是,孩子没办法检查或测量(除非他使用角度的概念)他用分数相加出来的结果是对是错。给他一个6英寸长的纸条,一把尺子,让他测量这个纸条的一半是多长,再加上同一纸条的,总共是多长。孩子会很容易地发现答案,即5英寸。他可以清楚地看见他的结果。而用圆形图的话他就不那么明白或者根本没办法看明白了。记得有一回我精心地画了一张格子纸,长9个格子,宽3个格子,然后要一个五年级学生找出它的。在这张纸上,这个孩子画了个他熟悉的圆形图,然后得意地看着我。当然我只好试图给他解释圆形图只适用于馅饼或圆形物。这显然对他来说又是一个大人讲的那种没用的、让人莫名其妙的东西。他的所有其他老师在讲到分数时,总是画圆形图,所以在他看来,圆形图就是分数的表示法。当然,我那次终于说服了他,跟我学的时候就要用我看中的其他的法子、其他的体系。但他心目中关于分数的真正形象并没有改变。
最后我要强调的是,我们应该给孩子们灌输所有这些牛、水果、动物、汽车的概念,这样他们就能彻底明白如何将不同的东西相加了。我的确认为,如果我们知道自己在把这些不同的分数相加的时候到底在干什么,而不是像许许多多的数学老师那样并不清楚在做什么,并且不说那些让人莫名其妙的废话,那么我们就有大把机会知道该怎么做、怎么说,该使用什么样的教材,该布置什么样的作业让孩子们完成,这样,我们就能够使孩子们懂得分数的概念。